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The multi-moments method of S. Tzivion, G. Feingold, and Z. Levin was applied
to the original kinetic collection equation in order to obtain a set of equations with
respect to moments in spectral bins. For solving this set of equations an accurate and
efficient method is proposed. The method conserves total mass independently of the
number of bins, time step, initial conditions, or kernel of interaction. In the present
paper the number of bins was varied from 36, 72, 108, and 144 in order to study
the behavior of the solutions. Different kernels and initial conditions were tested. In
all cases the results show that when the number of bins increases from 36 to 144
the numerical solution of the KCE gradually converges. Increasing the number of
bins from 108 to 144 produces only a small difference in the numerical solution,
indicating that the solution obtained for 144 bins approaches the “real” solution of
the KCE. The use of this solution for evaluating the accuracy of other numerical
methods that solve the KCE is suggested.c© 1999 Academic Press
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1. INTRODUCTION

Growth of particles by the collection of others is of interest in many areas of physics,
chemistry, atmospheric, and environmental sciences (e.g., growth of drops in a cloud, capture
of aerosols by drops). In spite of its importance, an exact solution to the equation that
describes this process using real kernels has not been found. In this paper the growth
of particles by collection is addressed and a method is proposed that may be utilized as a
reference for evaluating the accuracy of other numerical methods when real kernels are used.
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During the last 20 years great efforts were invested in trying to solve the kinetic collection
equation (KCE) by developing analytical methods for simplified kernels or by developing
numerical methods whenever real kernels were used. Analytical solutions were found for
kernels that do not depend on the particles’ mass or for those that are proportional to the
sum of the masses of the interacting particles (Golovin [11]).

It is normal practice testing the accuracy of a numerical method by comparing its solution
to that of an analytical one. Since analytical solutions for the KCE are available only for a
few cases, it is customary to assume that agreement between the numerical solution to the
analytical one guarantees the correctness of the numerical solution when real kernels are
used (e.g., [1, 23]). Unfortunately, this assumption is not always correct since many of the
numerical methods agree well with the analytical solutions when special kernels are used,
but differ significantly one from the other when a real kernel is used. In fact, there is no
method available to reliably verify the numerical results obtained when real kernels are used.

Numerical simulations of the stochastic process of coagulation can be performed using the
Monte-Carlo method or by solving the KCE. The justification for using the KCE to describe
the stochastic process is out of the scope of the present article and was extensively treated
in the literature [8, 9, 20, 21]. In the following paragraphs some previous Monte-Carlo
simulations and two numerical methods used for solving the KCE are briefly described.

Monte-Carlo simulations. The stochastic process of coagulation was treated in a num-
ber of papers using Monte-Carlo method (e.g., Gillespie [10]). The disadvantage of the
method is that for simulating the evolution of the distribution function it is necessary to
maintain, during all stages of the simulation, a large number of particles in the volume. This
requires extremely large memory and computing time. For this reason this method is not
very useful, even for the purpose of evaluating the accuracy of other numerical methods.
Seesselberget al. [22] suggested a modified algorithm based on the Monte-Carlo method.
Even though this proposed method significantly reduces the amount of computer memory
required, it requires large computation time and, therefore, it is not useful even for one-
dimensional models. Unfortunately, Seesselberget al. [22] did not provide any indication
as to how close their results are to those of Gillespie [10]. In addition, their paper did not
present any sensitivity tests with respect to the number of bins, the kernel used, the time
step, or the initial conditions. Their only test was a comparison with the analytical solution
using Golovin’s kernel and, even in this case, only for conditions with relatively low mass
content (1 gkg−1). For this reason, although their results are interesting, they could not be
considered a benchmark for comparing the accuracy of other methods.

Discrete points methods.In these methods the overall particle spectrum is represented
by a number of discrete points, each having an equation which has been transformed from the
KCE. In order to calculate the collision integrals it is necessary to prescribe the distribution
function itself. Berry and Reinhardt [1] formulated an approximation using a six-point
Lagrangian polynomial. This method presents a very good agreement with the analytical
solution of Golovin’s kernel using small time steps (1–3 s). However, it does not satisfactorily
conserve total mass for real kernels, especially for grids where the mass doubles every
successive discrete point. In this case, more than 20% of the mass is lost after 7.5 min of
simulation [15]. Signeuret al.[23] published results from three different numerical methods:
(a) discrete spectral points with cubic spline interpolation; (b) discrete spectral bins in which
an approximation of the distribution function, using only one moment; (c) a parameterization
method. In their simulations a constant, Golovin, or brownian kernel was used and the
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size of the particles was varied over a relatively narrow range(d= 0.01− 10µm). Under
these conditions the coagulation process was very slow. Convergence of the first method
as a function of the number of spectral bins was used for estimating the accuracy of the
parameterization scheme. Any conclusions with respect to the convergence or accuracy of
the method, however, cannot be drawn because their tests were limited mostly to cases with
slow mass transfer rate. Other works that also used a cubic spline approximation [5, 7],
but for a broad spectrum and faster coagulation rate showed a significant lack of total mass
conservation, even after short simulation times (≈10–20 min). Unfortunately, results for
these last methods were only published for a constant or Golovin’s kernels. It is reasonable
to conclude that for a real kernel and larger simulation times, the lack of mass conservation
would be much greater.

Moment methods.In these methods the overall particle spectrum is divided into discrete
bins and the KCE is transformed into a set of equations for moments in each bin. When the
approximation uses only one moment, Bleck’s method [2] is obtained. By approximating
the distribution function with a power polynomial, using more than one moment, the multi-
moments method (MMM) is obtained [26]. In contrast to the discrete spectral points meth-
ods, the moment methods exactly conserve total mass independently of the number of bins,
time step, initial conditions, or kernel of interaction. The limitation of these methods relates
to the fact that, by approximating the distribution function by moments, mass is distributed
throughout the width of the bins that are otherwise not completely full. Therefore, dur-
ing the early stages of coagulation, when the size distribution is narrow, moment methods
will accelerate the coagulation process. The extent of this acceleration depends on the order
of the polynomial used in the approximation in each bin and on the resolution (number of
bins).

Although checking the mass conservation of a numerical method is trivial, the evaluation
of the relative accuracy of the solution for any initial conditions and kernels is still today a
serious difficulty. This is because there is no exact solution that can be used as a “reference”
for comparison with various numerical solutions.

The purpose of this work is to develop an accurate numerical solution of the KCE based
on the MMM. It will be shown that the numerical solution of the KCE converges to the
exact solution when the spectral resolution (number of bins) is gradually increased. It is
suggested that this solution may be used as a reference for evaluating the accuracy of various
numerical methods. Since calculation time required by the proposed method is acceptable,
it can also be implemented into larger models (e.g., multidimensional cloud models).

In Section 2 the set of equations for the moments is obtained and in Section 3 their
solution is shown. Results and discussion of the simulations are presented in Section 4 and
conclusions in Section 5. Appendix A includes the detail expressions of the moments equa-
tions developed in Section 2, and Appendix B discusses the convergence of the numerical
solution to the exact solution.

2. EQUATIONS FOR THE MOMENTS

The KCE for a spectrum of particles can be written in the form (also known as
Smoluchowski equation):

∂ f (m, t)

∂t
=
∫ m/2

0
f (m− x, t) f (x, t)σ (m− x, x) dx− f (m, t)

∫ ∞
0

f (x, t)σ (m, x) dx,

(1)
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where f (m, t) dm is the number of particles with masses betweenm andm+ dmper unit
volume at timet . The kernel of interactionσ(m, t) represents the probability of collection
between particles having massm andx per unit time, per unit volume of air. The first term
on the right-hand side of Eq. (1) represents the gain term for particles with massm as a
result of coagulation of particles with massm− x andx. The second term is for the loss
of particles with massm due to their growth by collection of other particles. Equation (1)
was formulated by Smoluchowski [24] to describe homogeneous coagulation of particles in
brownian motion and it implicitily assumes that mass is conserved in the process. A detailed
discussion of the solution and properties of this equation can be founded in Voloshtsuk and
Sedunov [28] and Melzak [16].

For the numerical solution of this equation, the particle spectrum is divided into discrete
bins as

mk+1 = pmk, p = const>1,

wherek is the bin number andmk andmk+1 are the lower and upper boundaries of thekth
bin, respectively. The width of the bin is represented by the parameterp.

From Eq. (1) a set of equations is obtained for theJ moment of the distribution function
at bink− M J

k (t), defined as

M J
k (t) =

∫ mk+1

mk

mJ fk(m, t) dm. (2)

WhenJ= 0, 1, and 2 one obtains the physical moments of number concentration—Nk(t),
mass concentration—Mk(t) andZk(t) (radar reflectivity in the case of a cloud), respectively.
The set of equations for the particular cases in whichp≥ 2, p= 21/2, 21/3, and 21/4 are
shown in Appendix A (Eqs. (A5), (A6), (A7), and (A8), respectively). These equations are
accurate transformations of the initial equation (1) without any mathematical or physical
assumptions (following Bleck’s method [2] and Tzivionet al. [26]). Note that the set of
equations was formulated such that each double integral includes interaction between two
bins only.

Bleck [2] solved the set of equations derived from (2) for only one moment, assuming
a mass-weighted mean value for the drop number density in each category. Since the
equations are normalized for the mass density distribution, they conserve the mass content
of the spectrum. The main disadvantage of this method is the acceleration of the spectrum
development. This acceleration is an artifact of all one-moment approximations since they
require the average mass of particles in each bin to be constant and independent of time
(usually at the center of the bins). The introduction of weighting functions does not solve
the problem since it just moves the position of the average mass but still keeps it constant.
It reality, the average mass in a bin can change significantly with time, especially in the
bins representing the large particles which tend to be broad because of the logarithmically
increasing mass scale.

To overcome these aforementioned problems at least a two-moment approximation
method is required. In this case, the average mass in the bin is no longer restricted to
be constant. The solution presented by Tzivionet al. [26] solves for the first two moments
of the mass distribution function for the particular case in whichp= 2. In this article the
method is generalized to calculate the coagulation process for any division of the spectrum.
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In order to solve this set of equationsfk(m, t) is approximated by its moments. Usually,
this approximation is implemented using Legendre orthogonal polynoms [4]. The main
deficiency of such an approach is that this approximation cannot assure the positiveness
of the distribution function within the interval of approximation. In this workfk(m, t)
is approximated by two consecutive moments as in Tzivionet al. [26]. In this case the
approximation is given by

mJ fk(m, t) = mJ
k

(p− 1)
fk(mk, t)

(
p− m

mk

)
+ mJ

k+1

(p− 1)
fk(mk+1, t)

(
m

mk
− 1

)
. (3)

With this approximation, the positiveness ofmJ fk(m, t) is guaranteed iffk(mk, t) and
fk(mk+1, t) are positive.

Using (2) and (3) one can solve forfk(mk, t) and fk(mk+1, t) as a function of two
momentsNk(t) andMk(t),

fk(mk, t) = 2Nk(t)

(p− 1)2mk

[
p− m̄k(t)

mk

]
(4)

fk(mk+1, t) = 2Nk(t)

(p− 1)2mk

[
m̄k(t)

mk
− 1

]
,

where

m̄k(t) = Mk(t)

Nk(t)

is the average mass in bink.
Alternatively, higher order moments can be used to expressfk(mk, t) and fk(mk+1, t).

Similarly to Eq. (4), when usingMk(t) andZk(t) one obtains

fk(mk, t) = 2[pmk Mk(t)− Zk(t)]

(p− 1)2m3
k

(5)

fk(mk+1, t) = 2[Zk(t)−mk Mk(t)]

p(p− 1)2m3
k

.

In order to solve (A5)–(A8) for momentsNk(t) andMk(t), one needs to close the set of
equations by settingZk(t) in (5) as a function of the first two moments. For that purpose a
nondimensional parameterξ that relates three neighboring moments of the distribution in
thekth bin is introduced (for details see [26]):

ξ =
∫ mk+1

mk
mJ+1 f (m, t) dx

∫ mk+1

mk
mJ−1 f (m, t) dx[∫ mk+1

mk
mJ f (m, t) dx

]2 . (6)

As shown in [26] the value of this parameter is bounded by

1≤ ξ ≤ (p+ 1)2

4p
; (7)

by decreasing the parameterp (i.e., increasing the number of bins) it is possible, in principle,
to approximate moments in a bin of order greater thanJ by moments in the same bin, of
order not exceedingJ, to any required degree of accuracy.
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For 1≤ p≤ 2, ξ varies very little (e.g., forp= 2, ξ varies between 1 and 1.125 and for
p= 21/3 it varies between 1 and 1.013); therefore it can be averaged with sufficient accuracy
as

ξ̄ = 0.5

[
1+ (p+ 1)

mk

m̄k(t)
− p

(
mk

m̄k(t)

)2
]
. (8)

Recursively using thēξ parameterM J
k (t) can be expressed as a function of the two first

moments in thekth bin as

M J
k (t) = ξ̄ J(J−1)/2m̄J−1

k (t)Mk(t). (9)

Note that in order to use (8) it is necessary thatmk≤ m̄k(t)≤mk+1. In case these conditions
are not fulfilled (because of inaccuracies associated with the numerical scheme), one requires
ξ̄ to equal 1. Using (8) and (9), Eq. (5) can be rewritten as

fk(mk, t) = 2Nk(t)

(p− 1)2mk

[
(p− 1)

(
m̄k(t)

mk

)
−
(

m̄k(t)

mk

)2

+ p

]
(10)

fk(mk+1, t) = 2Nk(t)

(p− 1)2mk

[
(p− 1)

(
m̄k(t)

mk

)
+
(

m̄k(t)

mk

)2

− p

]

In the integrals in whichfk(m, t) appears the approximation is done using (4) while if
m fk(m, t) appears (10) is used. In (4) and (10),fk(mk, t) and fk(mk+1, t) will be positive
within bin k if the trivial conditionmk≤ m̄k(t)≤mk+1 is fullfiled. If because of numerical
truncation errors this is not the case, one requires that

fk(mk, t) = 2
Nk(t)

(p− 1)mk
, fk(mk+1, t) = 0, if m̄k(t) < mk,

(11)

fk(mk, t) = 0, fk(mk+1, t) = 2
Nk(t)

(p− 1)mk
, if m̄k(t) > mk+1.

3. THE SOLUTION OF THE EQUATIONS

Equations (A5)–(A8) are written for two physical moments ineach bin. By introducing
the approximation for the distribution function (Eq. (3)) in the inner and outer integrals, a
set of equations is obtained in which the time-dependent functions are out of the integrals.
The expressions under the integrals are of the typemnxlσ(m, x) (n, l = 0, 1, 2, 3) in which
all the functions are known. These double integrals can be calculated a priori only once and
then tabulated for use during the running of the model. This procedure is also applicable
to cases when the kernel depends on time, as long as it can be approximated as a function
of mass multiplied by a function of time. Finally, a set of differential equations is obtained
with the general form

d MJ
k (t)

dt
= F J

k (t) (12)

with a solution:

M J
k (t +1t) = M J

k (t)+1t F J
k (t). (13)
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The accuracy of the numerical solution of these ordinary differential equations depends
only on the spectral resolution and time step. For a small time step and high resolution the
numerical solution aspires to the exact solution [12, 14, 19].

For the case in whichp≥ 2 a more accurate solution can be obtained. In this case,
all the outer integrals are over full bins and only some of the inner integrals are over
incomplete bins. The approximation of the distribution function is, therefore, carried out
only when the inner integral is over an incomplete bin. As the coagulation proceeds the
distribution function changes significantly. One can, therefore, expect that by avoiding the
approximation of the distribution function, the accuracy of the solution will increase. In
these cases, in order to close the set of equations with respect to the moments, the kernel
σ(m, x) is approximated. Since this is a known function, it can be approximated to any
desired accuracy. This approach isrecommendedfor p≥ 2 if a slightly better accuracy is
required. Similar satisfactory results can be obtained by introducing the approximation of
the distribution function in both the inner and outer integrals.

For the special case ofp= 2, (A5) is identical to (5) in Tzivionet al. [26]. In this case
the approximation of the distribution function is only required in the inner integral of the
first and third terms on the right-hand side (RHS). The kernel is approximated according to

σk,i (m, x) = σ̃k,i (m+ x), (14)

where

σ̃k,i = 1

(xi+1− xi )(mk+1−mk)

∫ xi+1

xi

dx
∫ mk+1

mk

σk,i (m, x)

(m+ x)
dm. (15)

After introducing (14) into (A5) a set of equations is obtained forM J
k (t) which is not

closed because higher moments appear on the RHS of the equations. By using the expres-
sions given in (8) and (9) the set of equations can be closed.

The question still remains: how can one be sure that the solution obtained using a real
kernel is indeedthe real one? In Appendix B this point is discussed and it is shown that
when the resolution increases and the solution converges, it converges to the real solution.

Numerical simulations were conducted for three different kernels: Golovin’s [11]
σ(m, x)= 1500(m+ x), which has an analytical solution; and Long’s [15] and Hall’s [13]
coalescence efficiencies for the hydrodynamical kernel (hereafter Long and Hall kernels,
respectively). For Golovin’s kernel the convergence of the numerical solutions to the ana-
lytical one was checked using different width parameters,p, and different time steps,1t .
In all the simulations, an exponential initial distribution was used, with a mass concentra-
tion of 1–3 gkg−1 and number concentration of 300 cm−3. Note that in this paper mass
refers to that of water drops, namely density of 1 gcm−3. Simulations were carried out for
p= 2 (36 bins), p= 21/2 (72 bins), p= 21/3 (108 bins), andp= 21/4 (144 bins). In all the
cases the minimum radius was 1.5625µm. The time step in the simulations varied between
1, 2, 5, and 10 s. The results presented in the plots (except Fig. 7) are for time step of 1 s.

Figure 1 shows the evolution of the spectrum by collection after 20 and 40 min, respec-
tively; as given by the analytical solution and by the MMM for 36, 72, 108, and 144 bins, in
the case of Golovin kernel. In these cases the average radius of the initial distribution was
r̄0= 9.3µm which corresponds to mass concentration of 1 gkg−1 for water drops. Figure 2
is similar to Fig. 1 but for an initial average radius ofr̄0= 13.4µm (3 gkg−1), after 10 and
15 min, respectively. From these figures one sees a small acceleration for 36 and 72 bins
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FIG. 1. Mass distribution as a function of diameter for different spectral resolutions using Golovin’s kernel,
after 20 and 40 min of simulation. The average radius of the initial distribution was 9.3µm (1 gkg−1). The time
step was 1 s.

and very good agreement for 108 and 144 bins, as compared to the analytical solution. In
all cases the total mass was fully conserved regardless the number of bins or the time step.

Figures 3 and 4 present the evolution of the number and mass concentration after 20 and
40 min, respectively; in case of Long’s kernel. In these cases the initial average radius was
r̄0= 9.3µm. Figures 5 and 6 are similar to Figs. 3 and 4 but for an initial average radius of
r̄0= 13.4µm (3 gkg−1). From Figs. 3–6 it can be seen that a moderate acceleration appeared
for 36 and 72 bins, as compared to the 144 bins case, while the 108 bins converged to the
144. This acceleration phenomena is very small when one looks at the graph representing

FIG. 2. Mass distribution as a function of diameter for different spectral resolutions using Golovins’s kernel,
after 10 and 15 min of simulation. The average radius of the initial distribution was 13.4µm (3 gkg−1). The time
step was 1 s.
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FIG. 3. Number concentration distribution as a function of diameter for different spectral resolutions using
Long’s kernel after 20 and 40 min of simulation. The average radius of the initial distribution was 9.3µm
(1 gkg−1). The time step was 1 s.

number (or concentration) distribution, but it increases when the higher moments, such
as the mass distribution, are viewed. Also, for Long’s kernel total mass conservation was
independent of the time step (1–10 s) and number of bins. Note that the convergence of the
case with 108 bins to that of the 144 bins did not depend on the initial distribution.

From Figs. 3–6 it can be seen that at later times the convergence to the 144 bins solution
is better than at the earlier stages of spectra evolution. The reason is that at the early stages
the growth by collection puts particles into empty bins, usually at the lower end of each
bin. The approximation of the distribution function by moments spreads the mass over the
whole bin and thus artificially accelerates the growth. At a later stage (the mature stage of

FIG. 4. Like Fig. 3, for mass distribution.
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FIG. 5. Number concentration distribution as a function of diameter for different spectral resolutions using
Long’s kernel, after 10 and 15 min of simulation. The average radius of the initial distribution was 13.4µm
(3 gkg−1). The time step was 1 s.

the spectrum), the growth by collection often places the particles at the upper end of the
bins and the approximation tends to decelerate the growth. At the same time one sees that
the rate of convergence also depends on the initial distribution. It increases when the initial
average radius increases.

The convergence of higher moments (e.g.,Zk(t)) was also tested and found to be similar
to those obtained for the mass concentration.

In Fig. 7 the results obtained for different time steps are shown, in the case of Long’s
kernel for 144 bins, with 1 gkg−1 at two times: 20 min and 40 min. For time steps as 1 and
2 s, the results are almost identical while for 5 s and 10 s the accuracy is somewhat lower.

FIG. 6. Like Fig. 5, for mass distribution.
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FIG. 7. Mass distribution as a function of diameter for Long’s kernel using different time steps. The number
of bins was 144 and the average radius of the initial distribution was 9.3µm (1 gkg−1).

One can, therefore, conclude that a time step of 1 s beutilized when using the 144-bin
algorithm as a reference for comparison with other numerical methods. As already pointed
out, total mass is accurately conserved for all time steps.

Figure 8 is similar to Fig. 6, except that here Hall’s kernel was used. From this figure it can
be seen that the results are very similar to those obtained using Long’s kernel. Only small
differences appear in the coagulation and convergence rates. In this case the coagulation
rate is very slightly smaller than when Long’s kernel is used. Using Hall’s kernel rather
than Long’s kernel a little better convergence of the 108 bins to 144 bins is obtained.

FIG. 8. Mass concentration distribution as a function of diameter for Hall’s kernel using different spectral
resolutions, after 10 and 15 min of simulation. The average radius of the initial distribution was 13.4µm (1 gkg−1).
The time step was 1 s.
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5. CONCLUSIONS

In this paper the solution of the kinetic collection equation was investigated using the
multi-moments method with 36, 72, 108, and 144 bins. The total mass was exactly conserved
without dependence on the initial conditions, resolution, time step, or kernel. Three different
kernels were used: Golovin’s kernel, to which an analytical solution is available, and the
real kernels of Long and Hall. It was shown that, as the number of bins increased, better
convergence to that of the 144 bins was obtained. The results from 108 bins were almost
identical to those obtained with 144 bins.

Based on these results it is inferred that the solution obtained for 144 bins approaches
the exact solution of the KCE for any kernel of interaction and it could be utilized as a
reference for evaluating the accuracy of other numerical methods used for computing the
kinetic collection equation.

It is important to note that the same method of moments has been used to develop
numerical solutions for different kinetic transfer equations such as for the growth of cloud
drops by vapor diffusion [27] for describing the changes in the raindrop size spectra due to
collisional breakup [6] and for treating the interactions between drops and ice particles [18].
Furthermore, the method of moments can be used to solve a variety of physical processes
described by integro–differential equations.

The numerical calculations of the coagulation process using 144 bins and 1 s time step,
required about 300 s of CPU time on a SGI Challenge R10000 for simulating 1 h. Therefore,
in simulations in which a detailed description of the coagulation process is required, the
very high resolution grid can be implemented.

The computer codes that implement the algorithms presented in this article can be freely
obtained on the internet at http://www.tau.ac.il/geophysics/staff/tamir1/mom.html.

APPENDIX A

Using the KCE (1) and Eq. (2), one can obtain a system of equations with respect to the
moments in each bink of the size distribution as

d MJ
k (t)

dt
=
∫ mk+1

mk

mJ dm
∫ m/2

m1

f (m− x, t) f (m, x)σ (m− x, x) dx

−
I∑

i=1

∫ xi+1

xi

fi (x, t) dx
∫ mk+1

mk

mJ fk(m, t) dm, (A1)

where I is the total number of bins andm1, the smallest mass considered. The first dou-
ble integral (gain integral) in Eq. (A1) is transformed by dividing the area of integration
into separate subareas in whichfk and fi represent the size distributions in binsk and i ,
respectively (for details see [2, 26]).

Using this approach a set of equations is obtained for the particular cases used in this
paper. Equation (A5) is derived forp≥ 2, Eq. (A6) is derived forp= 21/2, Eq. (A7) is
derived forp= 21/3, and Eq. (A8) is derived forp= 21/4.

For the minimum and maximum values of the drop radii we choser1= 1.5625µm and
rmax= 6.4 mm. Using different values ofp, as above, within this size range the number
of bins, I , varies fromI ≤ 36, I = 72, I = 108, andI = 144, as represented by Eqs. (A5),
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(A6), (A7), and (A8), respectively. The notation used is:

F J
k,i (m, x, t) = (m+ x)J fk(m, t) fi (x, t)σk,i (m, x) (A2)

G J
k,i (m, x, t) = [(m+ x)J −mJ ] fk(m, t) fi (x, t)σk,i (m, x) (A3)

HJ
k,i (m, x, t) = mJ fk(m, t) fi (x, t)σi,k(x,m); (A4)

p≥ 2,

d MJ
k (t)

dt

=
[

k−2∑
i=1

∫ xi+1

xi

∫ mk

mk−x
F J

k−1,i (m, x, t) dx dm+ 0.5
∫ xk

xk/2

∫ mk

mk/2
F J

k−1,k−1(m, x, t) dx dm

]

−
[

k−1∑
i=1

∫ xi+1

xi

∫ mk+1

mk+1−x
F J

k,i (m, x, t) dx dm+ 0.5
∫ xk+1

xk+1/2

∫ mk+1

mk+1/2
F J

k,k(m, x, t) dx dm

]

+
[

k−1∑
i=1

∫ xi+1

xi

∫ mk+1

mk

G J
k,i (m, x, t) dx dm−

I∑
i=k

∫ xi+1

xi

∫ mk+1

mk

HJ
k,i (m, x, t) dx dm

]

+
[ ∫ xk/2

xk−1

∫ mk

mk−x
F J

k−1,k−1(m, x, t) dx dm−
∫ xk+1/2

xk

∫ mk+1

mk+1−x
F J

k,k(m, x, t) dx dm

]
+ 0.5

∫ xk+1

xk

∫ mk+1

mk

F J
k,k(m, x, t) dx dm; (A5)

p= 21/2,

d MJ
k (t)

dt
=[

k−5∑
i=1

∫ xi+1

xi

∫ mk

mk−x
F J

k−1,i (m, x, t) dx dm+
∫ xk−xk−1

xk−4

∫ mk

mk−x
F J

k−1,k−4(m, x, t) dx dm

]

−
[

k−4∑
i=1

∫ xi+1

xi

∫ mk+1

mk+1−x
F J

k,i (m, x, t) dx dm+
∫ xk+1−xk

xk−3

∫ mk+1

mk+1−x
F J

k,k−3(m, x, t) dx dm

]

+
[

k−4∑
i=1

∫ xi+1

xi

∫ mk+1

mk

G J
k,i (m, x, t) dx dm−

I∑
i=max(1,k−3)

∫ xi+1

xi

∫ mk+1

mk

HJ
k,i (m, x, t) dx dm

]

+
∫ xk+1−xk

xk−3

∫ mk+1−x

mk

F J
k,k−3(m, x, t) dx dm+

[ ∫ xk−3

xk−xk−1

∫ mk

mk−1

F J
k−1,k−4(m, x, t) dx dm

+
∫ xk+1−xk

xk−3

∫ mk

mk−1

F J
k−1,k−3(m, x, t) dx dm+

∫ xk−2

xk+1−xk

∫ mk+1−x

mk−1

F J
k−1,k−3(m, x, t) dx dm

+
∫ xk−1

xk−2

∫ mk+1−x

mk−1

F J
k−1,k−2(m, x, t) dx dm

]
+
[ ∫ xk−3

xk−xk−1

∫ mk−1

mk−x
F J

k−2,k−4(m, x, t) dx dm

+
∫ xk−2

xk−3

∫ mk−1

mk−x
F J

k−2,k−3(m, x, t) dx dm+ 0.5
∫ xk−1

xk−2

∫ mk−1

mk−2

F J
k−2,k−2(m, x, t) dx dm

]
;

(A6)
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p= 21/3,

d MJ
k (t)

dt
=[

k−8∑
i=1

∫ xi+1

xi

∫ mk

mk−x
F J

k−1,i (m, x, t) dx dm+
∫ xk−xk−1

xk−7

∫ mk

mk−x
F J

k−1,k−7(m, x, t) dx dm

]

−
[

k−7∑
i=1

∫ xi+1

xi

∫ mk+1

mk+1−x
F J

k,i (m, x, t) dx dm+
∫ xk+1−xk

xk−6

∫ mk+1

mk+1−x
F J

k,k−6(m, x, t) dx dm

]

+
[

k−7∑
i=1

∫ xi+1

xi

∫ mk+1

mk

G J
k,i (m, x, t) dx dm−

I∑
i=max(1,k−8)

∫ xi+1

xi

∫ mk+1

mk

HJ
k,i (m, x, t) dx dm

]

+
∫ xk+1−xk

xk−6

∫ mk+1

mk

F J
k,k−6(m, x, t) dx dm+

[ ∫ xk−6

xk−xk−1

∫ mk

mk−1

F J
k−1,k−7(m, x, t) dx dm

+
∫ xk+1−xk

xk−6

∫ mk

mk−1

F J
k−1,k−6(m, x, t) dx dm+

∫ xk−5

xk+1−xk

∫ mk+1−x

mk−1

F J
k−1,k−6(m, x, t) dx dm

+
∫ xk−4

xk−5

∫ mk+1−x

mk−1

F J
k−1,k−5(m, x, t) dx dm+

∫ xk+1−xk−1

xk−4

∫ mk+1−x

mk−1

F J
k−1,k−4(m, x, t) dx dm

]
+
[ ∫ xk−6

xk−xk−1

∫ mk−1

mk−x
F J

k−2,k−7(m, x, t) dx dm+
∫ xk−5

xk−6

∫ mk−1

mk−x
F J

k−2,k−6(m, x, t) dx dm

+
∫ xk−xk−2

xk−5

∫ mk−1

mk−x
F J

k−2,k−5(m, x, t) dx dm+
∫ xk−4

xk−xk−2

∫ mk−1

mk−2

F J
k−2,k−5(m, x, t) dx dm

+
∫ xk+1−xk−1

xk−4

∫ mk−1

mk−2

F J
k−2,k−4(m, x, t) dx dm+

∫ xk−3

xk+1−xk−1

∫ mk+1−x

mk−2

F J
k−2,k−4(m, x, t) dx dm

+
∫ xk−2

xk−3

∫ mk+1−x

mk−2

F J
k−2,k−3(m, x, t) dx dm

]
+
[ ∫ xk−4

xk−xk−2

∫ mk−2

mk−x
F J

k−3,k−5(m, x, t) dx dm

+
∫ xk−3

xk−4

∫ mk−2

mk−x
F J

k−3,k−4(m, x, t) dx dm+ 0.5
∫ xk−2

xk−3

∫ mk−2

mk−3

F J
k−3,k−3(m, x, t) dx dm

]
;

(A7)

p= 21/4,

d MJ
k (t)

dt
=[

k−12∑
i=1

∫ xi+1

xi

∫ mk

mk−x
F J

k−1,i (m, x, t) dx dm+
∫ xk−xk−1

xk−11

∫ mk

mk−x
F J

k−1,k−11(m, x, t) dx dm

]

−
[

k−11∑
i=1

∫ xi+1

xi

∫ mk+1

mk+1−x
F J

k,i (m, x, t) dx dm+
∫ xk+1−xk

xk−10

∫ mk+1

mk+1−x
F J

k,k−10(m, x, t) dx dm

]

+
[

k−11∑
i=1

∫ xi+1

xi

∫ mk+1

mk

G J
k,i (m, x, t) dx dm−

I∑
i=max(1,k−10)

∫ xi+1

xi

∫ mk+1

mk

HJ
k,i (m, x, t) dx dm

]



A NUMERICAL SOLUTION OF THE KCE 541

+
∫ xk+1−xk

xk−10

∫ mk+1

mk

F J
k,k−10(m, x, t) dx dm+

[ ∫ xk−10

xk−xk−1

∫ mk

mk−1

F J
k−1,k−11(m, x, t) dx dm

+
∫ xk+1−xk

xk−10

∫ mk

mk−1

F J
k−1,k−10(m, x, t) dx dm+

∫ xk−9

xk+1−xk

∫ mk+1−x

mk−1

F J
k−1,k−10(m, x, t) dx dm

+
∫ xk−8

xk−9

∫ mk+1−x

mk−1

F J
k−1,k−9(m, x, t) dx dm+

∫ xk−7

xk−8

∫ mk+1−x

mk−1

F J
k−1,k−8(m, x, t) dx dm

+
∫ xk+1−xk−1

xk−7

∫ mk+1−x

mk−1

F J
k−1,k−7(m, x, t) dx dm

]
+
[∫ xk−10

xk−xk−1

∫ mk−1

mk−x
F J

k−2,k−11(m, x, t) dx dm+
∫ xk−9

xk−10

∫ mk−1

mk−x
F J

k−2,k−10(m, x, t) dx dm

+
∫ xk−8

xk−9

∫ mk−1

mk−x
F J

k−2,k−9(m, x, t) dx dm+
∫ xk−xk−2

xk−8

∫ mk−1

mk−x
F J

k−2,k−8(m, x, t) dx dm

+
∫ xk−7

xk−xk−2

∫ mk−1

mk−2

F J
k−2,k−8(m, x, t) dx dm+

∫ xk+1−xk−1

xk−7

∫ mk−1

mk−2

F J
k−2,k−7(m, x, t) dx dm

+
∫ xk−6

xk+1−xk−1

∫ mk+1−x

mk−2

F J
k−2,k−7(m, x, t) dx dm+

∫ xk−5

xk−6

∫ mk+1−x

mk−2

F J
k−2,k−6(m, x, t) dx dm

+
∫ xk+1−xk−2

xk−5

∫ mk+1−x

mk−2

F J
k−2,k−5(m, x, t) dx dm

]
+
[∫ xk−7

xk−xk−2

∫ mk−2

mk−x
F J

k−3,k−8(m, x, t) dx dm+
∫ xk−6

xk−7

∫ mk−2

mk−x
F J

k−3,k−7(m, x, t) dx dm

+
∫ xk−xk−3

xk−6

∫ mk−2

mk−x
F J

k−3,k−6(m, x, t) dx dm+
∫ xk−5

xk−xk−3

∫ mk−2

mk−3

F J
k−3,k−6(m, x, t) dx dm

+
∫ xk+1−xk−2

xk−5

∫ mk−2

mk−3

F J
k−3,k−5(m, x, t) dx dm+

∫ xk−4

xk+1−xk−2

∫ mk+1−x

mk−3

F J
k−3,k−5(m, x, t) dx dm

+
∫ xk−3

xk−4

∫ mk+1−x

mk−3

F J
k−3,k−4(m, x, t) dx dm

]
+
[∫ xk−5

xk−xk−3

∫ mk−3

mk−x
F J

k−4,k−6(m, x, t) dx dm

+
∫ xk−4

xk−5

∫ mk−3

mk−x
F J

k−4,k−5(m, x, t) dx dm+ 0.5
∫ xk−3

xk−4

∫ mk−3

mk−4

F J
k−4,k−4(m, x, t) dx dm

]
.

(A8)

APPENDIX B: CONVERGENCE OF THE NUMERICAL SOLUTION

TO THE EXACT SOLUTION

There is no rigorous mathematical proof of the uniqueness of a numerical solution of a
general nonlinear integro–differential equation and of its convergence to the exact solution.
In spite of that, it is shown, using mathematical logic, that in the present case the numerical
solution converges to the exact solution when the spectral resolution is increased.

Melzac [16] proved that the KCE has a unique and exact solution when the initial distri-
bution function is positive, continuous, bounded, and integrable and the kernel is symmetric
and bounded. All these conditions are fulfilled in the present case. In addition, Drake [3]
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showed that all the moments of the distribution function can be found using Mellen’s trans-
formation [25]. Once the moments are known, they can be used to calculate the actual
distribution function. The accuracy of the calculated distribution function depends on the
number of moments used in the calculation.

The inequality (7) for the nondimensional parameterξ introduced by Tzivionet al. [26]
is valid for all positive continuous functions and demonstrates that the range of values of
ξ depends only on the parameterp. Therefore, the accuracy of the approximation for high
moments by (9) depends on the value ofp only.

For example, whenp= 2 the maximum error in the approximation of the second and
fifth moments by the first two moments using (8) and (9) is 6.25 and 83%, respectively.
For p= 21/4 the errors sharply decrease to 0.38 and 3.83%, respectively. Therefore, any
required degree of accuracy can be achieved by decreasing the value ofp.

This implies that if one obtains the first two spectral moments with high accuracy then it is
possible to get any other higher moment with any required accuracy by using an appropriate
spectral resolution. In accordance with the work of Drake [3] which was discussed above,
the distribution function itself can be determined.

Using the multi-moments method, a set of equations with respect to spectral moments
of the distribution function is obtained from the original KCE without any mathemati-
cal or physical assumptions. This is done forp= 2, 21/2, 21/3, and 21/4 (Eqs. (A5)–(A8),
respectively).

In order to solve this set of equations one approximates the distribution function in
each spectral bin using its two first moments. In the present scheme, a power polynomial
approximation is used that accurately calculates the moments used for the approximation and
assures the positiveness of the distribution function. The order of the polynomial depends on
the number of moments one wants to consider, the larger the number of moments, the higher
the order of the polynomial approximation. In the present case linear or cubic approximations
are used. Obviously, when one increases the spectral resolution, the approximation of the
distribution function in the bin interval is closer to the actual distribution function. That
means that in order to obtain a better approximation of the distribution function one can
increase the spectral resolution or increase the order of the polynomial of the approxi-
mation.

As a result of the approximation, one obtains a set of equations in which the time-
dependent functions are out of the integrals. The expressions under the integrals are of
the typemj xkσ(m, x), a known and time independent function, and can be calculated in
advance up to machine precision accuracy.

Finally, a closed set of ordinary differential equations with respect to the first two spectral
moments (Eq. (12)) is obtained. The accuracy of the numerical solution of these equations
depends only on the spectral resolution and time step. For small time steps and high resolu-
tion the numerical solution approaches the exact solution [12, 14, 19]. While a significant
difference is observed between the results for time steps of 10 s and 5 s, they are very similar
for 5 s and 2 s and those for 2 s and 1 s are almost identical (Fig. 7).

When the spectral resolution is increased, the results gradually converge. Increasing
the number of bins from 108 to 144 produces only a small difference in the results. This
convergence is obtained for any initial conditions and kernels. Therefore, for 144 bins and
time step of 1 s very accurate solutions for the first two spectral moments are obtained and
one can proceed to find other higher moments with acceptable accuracy, using Eq. (9). Once
these moments are known the distribution function itself can be constructed.
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