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The multi-moments method of S. Tzivion, G. Feingold, and Z. Levin was applied
to the original kinetic collection equation in order to obtain a set of equations with
respect to moments in spectral bins. For solving this set of equations an accurate and
efficient method is proposed. The method conserves total mass independently of the
number of bins, time step, initial conditions, or kernel of interaction. In the present
paper the number of bins was varied from 36, 72, 108, and 144 in order to study
the behavior of the solutions. Different kernels and initial conditions were tested. In
all cases the results show that when the number of bins increases from 36 to 144
the numerical solution of the KCE gradually converges. Increasing the number of
bins from 108 to 144 produces only a small difference in the numerical solution,
indicating that the solution obtained for 144 bins approaches the “real” solution of
the KCE. The use of this solution for evaluating the accuracy of other numerical
methods that solve the KCE is suggestea 1999 Academic Press

Key Wordskinetic collection equation; numerical solutions of integro-differential
equations.

1. INTRODUCTION

Growth of particles by the collection of others is of interest in many areas of phys
chemistry, atmospheric, and environmental sciences (e.g., growth of dropsin acloud, ce
of aerosols by drops). In spite of its importance, an exact solution to the equation
describes this process using real kernels has not been found. In this paper the ¢
of particles by collection is addressed and a method is proposed that may be utilizec
reference for evaluating the accuracy of other numerical methods when real kernels are
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During the last 20 years great efforts were invested in trying to solve the kinetic collecti
equation (KCE) by developing analytical methods for simplified kernels or by developi
numerical methods whenever real kernels were used. Analytical solutions were found
kernels that do not depend on the particles’ mass or for those that are proportional tc
sum of the masses of the interacting particles (Golovin [11]).

Itis normal practice testing the accuracy of a numerical method by comparing its solut
to that of an analytical one. Since analytical solutions for the KCE are available only fo
few cases, it is customary to assume that agreement between the numerical solution t
analytical one guarantees the correctness of the numerical solution when real kernel
used (e.g., [1, 23]). Unfortunately, this assumption is not always correct since many of
numerical methods agree well with the analytical solutions when special kernels are u
but differ significantly one from the other when a real kernel is used. In fact, there is
method available to reliably verify the numerical results obtained when real kernels are u:

Numerical simulations of the stochastic process of coagulation can be performed using
Monte-Carlo method or by solving the KCE. The justification for using the KCE to descril
the stochastic process is out of the scope of the present article and was extensively tre
in the literature [8, 9, 20, 21]. In the following paragraphs some previous Monte-Ca
simulations and two numerical methods used for solving the KCE are briefly described

Monte-Carlo simulations. The stochastic process of coagulation was treated in a nur
ber of papers using Monte-Carlo method (e.g., Gillespie [10]). The disadvantage of
method is that for simulating the evolution of the distribution function it is necessary
maintain, during all stages of the simulation, a large number of particles in the volume. T
requires extremely large memory and computing time. For this reason this method is
very useful, even for the purpose of evaluating the accuracy of other numerical methc
Seesselbergt al. [22] suggested a modified algorithm based on the Monte-Carlo methc
Even though this proposed method significantly reduces the amount of computer men
required, it requires large computation time and, therefore, it is not useful even for o
dimensional models. Unfortunately, Seesselletragl. [22] did not provide any indication
as to how close their results are to those of Gillespie [10]. In addition, their paper did |
present any sensitivity tests with respect to the number of bins, the kernel used, the
step, or the initial conditions. Their only test was a comparison with the analytical soluti
using Golovin’'s kernel and, even in this case, only for conditions with relatively low ma
content (1 gkg?). For this reason, although their results are interesting, they could not
considered a benchmark for comparing the accuracy of other methods.

Discrete points methods.In these methods the overall particle spectrum is represent
by a number of discrete points, each having an equation which has been transformed fror
KCE. In order to calculate the collision integrals it is necessary to prescribe the distribut
function itself. Berry and Reinhardt [1] formulated an approximation using a six-poil
Lagrangian polynomial. This method presents a very good agreement with the analyt
solution of Golovin’s kernel using small time steps (1-3 s). However, it does not satisfacto
conserve total mass for real kernels, especially for grids where the mass doubles €
successive discrete point. In this case, more than 20% of the mass is lost after 7.5 m
simulation [15]. Signeuet al.[23] published results from three different numerical methods
(a) discrete spectral points with cubic spline interpolation; (b) discrete spectral bins in wh
an approximation of the distribution function, using only one moment; (c) a parameterizat
method. In their simulations a constant, Golovin, or brownian kernel was used and
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size of the particles was varied over a relatively narrow raige 0.01— 10 um). Under
these conditions the coagulation process was very slow. Convergence of the first me
as a function of the number of spectral bins was used for estimating the accuracy o
parameterization scheme. Any conclusions with respect to the convergence or accure
the method, however, cannot be drawn because their tests were limited mostly to case:
slow mass transfer rate. Other works that also used a cubic spline approximation [5
but for a broad spectrum and faster coagulation rate showed a significant lack of total |
conservation, even after short simulation timed0—20 min). Unfortunately, results for
these last methods were only published for a constant or Golovin’s kernels. It is reasor
to conclude that for a real kernel and larger simulation times, the lack of mass conserv:
would be much greater.

Moment methods.In these methods the overall particle spectrum is divided into discr
bins and the KCE is transformed into a set of equations for moments in each bin. Whel
approximation uses only one moment, Bleck’s method [2] is obtained. By approximat
the distribution function with a power polynomial, using more than one moment, the mt
moments method (MMM) is obtained [26]. In contrast to the discrete spectral points mi
ods, the moment methods exactly conserve total mass independently of the number of
time step, initial conditions, or kernel of interaction. The limitation of these methods rele
to the fact that, by approximating the distribution function by moments, mass is distribt
throughout the width of the bins that are otherwise not completely full. Therefore, ¢
ing the early stages of coagulation, when the size distribution is narrow, moment met|
will accelerate the coagulation process. The extent of this acceleration depends on the
of the polynomial used in the approximation in each bin and on the resolution (numbe
bins).

Although checking the mass conservation of a numerical method is trivial, the evalua
of the relative accuracy of the solution for any initial conditions and kernels is still toda
serious difficulty. This is because there is no exact solution that can be used as a “refere
for comparison with various numerical solutions.

The purpose of this work is to develop an accurate numerical solution of the KCE be
on the MMM. It will be shown that the numerical solution of the KCE converges to tl
exact solution when the spectral resolution (number of bins) is gradually increased.
suggested that this solution may be used as a reference for evaluating the accuracy of v
numerical methods. Since calculation time required by the proposed method is accept
it can also be implemented into larger models (e.g., multidimensional cloud models).

In Section 2 the set of equations for the moments is obtained and in Section 3 |
solution is shown. Results and discussion of the simulations are presented in Section
conclusions in Section 5. Appendix A includes the detail expressions of the moments e
tions developed in Section 2, and Appendix B discusses the convergence of the num
solution to the exact solution.

2. EQUATIONS FOR THE MOMENTS

The KCE for a spectrum of particles can be written in the form (also known
Smoluchowski equation):
f m/2 e’
w :/ fm—x,Hf(x,H)o(m—x, x)dx — f(m, t)/ f(x,t)o(m, x) dx,
0 0

1)
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where f (m, t) dmis the number of particles with masses betwseandm + dm per unit
volume at time. The kernel of interactionr (m, t) represents the probability of collection
between particles having massandx per unit time, per unit volume of air. The first term
on the right-hand side of Eq. (1) represents the gain term for particles withmassa
result of coagulation of particles with masgs— x andx. The second term is for the loss
of particles with mass due to their growth by collection of other particles. Equation (1
was formulated by Smoluchowski [24] to describe homogeneous coagulation of particle
brownian motion and it implicitily assumes that mass is conserved in the process. A deta
discussion of the solution and properties of this equation can be founded in Voloshtsuk
Sedunov [28] and Melzak [16].

For the numerical solution of this equation, the particle spectrum is divided into discrt
bins as

Mgi1 = PN, p = const>1,

wherek is the bin number andhy andmy ;1 are the lower and upper boundaries of kitle
bin, respectively. The width of the bin is represented by the parameter

From Eq. (1) a set of equations is obtained for hmoment of the distribution function
at bink — MJ (t), defined as

M () = / “ md fi(m, t) dm. )

my

WhenJ =0, 1, and 2 one obtains the physical moments of number concentrabip(iy:
mass concentrationdy (t) andZ (t) (radar reflectivity in the case of a cloud), respectively.
The set of equations for the particular cases in which2, p=2%2,2Y/3 and 2/4 are
shown in Appendix A (Egs. (A5), (A6), (A7), and (A8), respectively). These equations a
accurate transformations of the initial equation (1) without any mathematical or physi
assumptions (following Bleck’s method [2] and Tzivieh al. [26]). Note that the set of
equations was formulated such that each double integral includes interaction between
bins only.

Bleck [2] solved the set of equations derived from (2) for only one moment, assumi
a mass-weighted mean value for the drop number density in each category. Since
equations are normalized for the mass density distribution, they conserve the mass co
of the spectrum. The main disadvantage of this method is the acceleration of the spec
development. This acceleration is an artifact of all one-moment approximations since t
require the average mass of particles in each bin to be constant and independent of
(usually at the center of the bins). The introduction of weighting functions does not so
the problem since it just moves the position of the average mass but still keeps it const
It reality, the average mass in a bin can change significantly with time, especially in
bins representing the large particles which tend to be broad because of the logarithmic
increasing mass scale.

To overcome these aforementioned problems at least a two-moment approxima
method is required. In this case, the average mass in the bin is no longer restricte
be constant. The solution presented by Tzivebil. [26] solves for the first two moments
of the mass distribution function for the particular case in whpch 2. In this article the
method is generalized to calculate the coagulation process for any division of the spect



A NUMERICAL SOLUTION OF THE KCE 531

In order to solve this set of equatioffiglm, t) is approximated by its moments. Usually,
this approximation is implemented using Legendre orthogonal polynoms [4]. The nr
deficiency of such an approach is that this approximation cannot assure the positive
of the distribution function within the interval of approximation. In this woflK(m, t)
is approximated by two consecutive moments as in Tziwbal. [26]. In this case the
approximation is given by

; _ M _mY L M m_
rnfumi)—(p_l)nmki)(p mk>+(p l)&(kHJD< e 1> ®3)
With this approximation, the positiveness wf f(m, t) is guaranteed iff, (my, t) and
fk(my,1, t) are positive.

Using (2) and (3) one can solve fdi(mg,t) and fy(mg,1,t) as a function of two
momentsN (t) and M(t),

e O = e, -

2Nk () [ _mk(t):|
4)

fie(Mig1, 1) =

2N (t) [rﬁk(t) 3 1}
(p—D2my | my '

where

is the average mass in bin
Alternatively, higher order moments can be used to expfe8sk, t) and f (M1, t).
Similarly to Eq. (4), when usinily(t) and Z,(t) one obtains

2[pm My (t) — Z(1)]

fu(m, t) = (p— 1)2mE
®)
2[Zy (1) — m My (t
e, ) = S )
- k

In order to solve (A5)—(A8) for momentsy(t) and M(t), one needs to close the set of
equations by setting (t) in (5) as a function of the first two moments. For that purpose
nondimensional parametérthat relates three neighboring moments of the distribution
thekth bin is introduced (for details see [26]):

: fmk“ mI+1f (m, t)dxfmk+1 mI—1f (m, t)dx )
B [ [t md £ (m, t) dx]?

As shown in [26] the value of this parameter is bounded by

(p+ 12
4p

1<é¢< ; (7)
by decreasing the parametfe(i.e., increasing the number of bins) itis possible, in principle
to approximate moments in a bin of order greater tlasy moments in the same bin, of
order not exceeding, to any required degree of accuracy.
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For 1< p <2, & varies very little (e.g., fop =2, & varies between 1 and 1.125 and for
p =23 itvaries between 1 and 1.013); therefore it can be averaged with sufficient accur
as
— My Mg 2
: P50 P mo ©
Recursively using the_ parameteM (t) can be expressed as a function of the two firs
moments in théth bin as
MY (®) = £79722mg () M(®). 9)

Note that in order to use (8) it is necessary that< my(t) < my,1. In case these conditions
are notfulfilled (because of inaccuracies associated with the numerical scheme), one req
& to equal 1. Using (8) and (9), Eq. (5) can be rewritten as

2Nk (t) M (t) M (t) \ 2
fiMet) = ————|(p—1 -
k(M. 1) (= D2my [(p )( e ) ( M ) +p]

2N (t e (t T () 2
fk(mk+1,t)=¢l(p—l)(mk())+<mk()> —p]

(10)

(p— 1)2mk Mk mg

In the integrals in whichf(m, t) appears the approximation is done using (4) while i
mfc(m, t) appears (10) is used. In (4) and (1&Y(my, t) and f(my.1, t) will be positive
within bin k if the trivial conditionm, < my(t) < my_ is fullfiled. If because of numerical
truncation errors this is not the case, one requires that

_ N (t) _ o
f(mg, t) = 2(p “Dme f(Miya, t) =0, if m(t) < my,
(11)
M) =0, femin ) =2 KD it B 1) > i
(p— Dmy

3. THE SOLUTION OF THE EQUATIONS

Equations (A5)—(A8) are written for two physical momentgach bin By introducing
the approximation for the distribution function (Eg. (3)) in the inner and outer integrals
set of equations is obtained in which the time-dependent functions are out of the integi
The expressions under the integrals are of the ighe o (m, x) (n, 1 =0, 1, 2, 3) in which
all the functions are known. These double integrals can be calculated a priori only once
then tabulated for use during the running of the model. This procedure is also applice
to cases when the kernel depends on time, as long as it can be approximated as a fur
of mass multiplied by a function of time. Finally, a set of differential equations is obtain
with the general form

dM{ ®

e FJ () (12)

with a solution:

MJ (t + At) = MJ (1) + AtF (1), (13)
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The accuracy of the numerical solution of these ordinary differential equations depe
only on the spectral resolution and time step. For a small time step and high resolutiot
numerical solution aspires to the exact solution [12, 14, 19].

For the case in whiclp>2 a more accurate solution can be obtained. In this ca:
all the outer integrals are over full bins and only some of the inner integrals are ¢
incomplete bins. The approximation of the distribution function is, therefore, carried
only when the inner integral is over an incomplete bin. As the coagulation proceeds
distribution function changes significantly. One can, therefore, expect that by avoiding
approximation of the distribution function, the accuracy of the solution will increase.
these cases, in order to close the set of equations with respect to the moments, the |
o (m, X) is approximated. Since this is a known function, it can be approximated to
desired accuracy. This approaclrésommendetbr p > 2 if a slightly better accuracy is
required. Similar satisfactory results can be obtained by introducing the approximatio
the distribution function in both the inner and outer integrals.

For the special case @f=2, (A5) is identical to (5) in Tzivioret al. [26]. In this case
the approximation of the distribution function is only required in the inner integral of t
first and third terms on the right-hand side (RHS). The kernel is approximated accordir

ok,i (M, X) = Gi (M4 X), (14)

where

Oki = /XI+1 /mk+1 Tlei (M, X) dm. (15)
T Xir— X )(mk+1 — M) (m+ X)

After introducing (14) into (A5) a set of equations is obtained ¥ (t) which is not
closed because higher moments appear on the RHS of the equations. By using the e
sions given in (8) and (9) the set of equations can be closed.

The question still remains: how can one be sure that the solution obtained using a
kernelis indeedthe real one? In Appendix B this point is discussed and it is shown tf
when the resolution increases and the solution converges, it converges to the real solt

Numerical simulations were conducted for three different kernels: Golovin's [1
o (m, x) =1500m + x), which has an analytical solution; and Long’s [15] and Hall's [13
coalescence efficiencies for the hydrodynamical kernel (hereafter Long and Hall kert
respectively). For Golovin’s kernel the convergence of the numerical solutions to the :
lytical one was checked using different width parametprand different time stepgt.

In all the simulations, an exponential initial distribution was used, with a mass concer
tion of 1-3 gkg ! and number concentration of 300 tfn Note that in this paper mass
refers to that of water drops, namely density of 1 génSimulations were carried out for
p=2 (36 bing, p=2Y2 (72 bing, p= 22 (108 bing, andp = 2V (144 bins). In all the

cases the minimum radius was 1.562%. The time step in the simulations varied betwee
1, 2,5, and 10 s. The results presented in the plots (except Fig. 7) are for time step of

Figure 1 shows the evolution of the spectrum by collection after 20 and 40 min, resj
tively; as given by the analytical solution and by the MMM for 36, 72, 108, and 144 bins
the case of Golovin kernel. In these cases the average radius of the initial distribution
ro = 9.3 um which corresponds to mass concentration of 1-gkgr water drops. Figure 2
is similar to Fig. 1 but for an initial average radiusrgf= 13.4 um (3 gkg™'), after 10 and
15 min, respectively. From these figures one sees a small acceleration for 36 and 7-
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FIG. 1. Mass distribution as a function of diameter for different spectral resolutions using Golovin’s kern
after 20 and 40 min of simulation. The average radius of the initial distribution wasr@.@L gkg?). The time
stepwas 1s.

and very good agreement for 108 and 144 bins, as compared to the analytical solutiol
all cases the total mass was fully conserved regardless the number of bins or the time ¢

Figures 3 and 4 present the evolution of the number and mass concentration after 2C
40 min, respectively; in case of Long’s kernel. In these cases the initial average radius
ro=9.3 um. Figures 5 and 6 are similar to Figs. 3 and 4 but for an initial average radius
fo=13.4m (3 gkg). From Figs. 3—6 it can be seen that a moderate acceleration appee
for 36 and 72 bins, as compared to the 144 bins case, while the 108 bins converged t
144. This acceleration phenomena is very small when one looks at the graph represel

107 : - - -
— Analitic |
o—a 144 bins
— 10‘6 = ~x 108 b!nS.
= o—o [72bins
£ ~—a 36 bins]
£
S 408} .
o
=)
B
=
S 10710} .
10712 . . . .
0.001 0.010 0.100 1.000 10.000

Diameter (mm)

FIG. 2. Mass distribution as a function of diameter for different spectral resolutions using Golovins’s kern
after 10 and 15 min of simulation. The average radius of the initial distribution wag.18.8 gkg'). The time
stepwas 1s.
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FIG. 3. Number concentration distribution as a function of diameter for different spectral resolutions us
Long’s kernel after 20 and 40 min of simulation. The average radius of the initial distribution wasn®.3
(1 gkg?). The time stepwas 1 s.

number (or concentration) distribution, but it increases when the higher moments, ¢
as the mass distribution, are viewed. Also, for Long’s kernel total mass conservation
independent of the time step (1-10 s) and number of bins. Note that the convergence
case with 108 bins to that of the 144 bins did not depend on the initial distribution.
From Figs. 3—6 it can be seen that at later times the convergence to the 144 bins sol
is better than at the earlier stages of spectra evolution. The reason is that at the early ¢
the growth by collection puts particles into empty bins, usually at the lower end of e
bin. The approximation of the distribution function by moments spreads the mass ove
whole bin and thus artificially accelerates the growth. At a later stage (the mature stag

10-4 T - T T T

1078

a—g 144 bins
10‘10 B wx 108 pins
o 72bins
~a 36bins

dM/dD (gr cm® mm™)

10712

0.001 0.010 0.100 1.000 10.000
Diameter (mm)

FIG. 4. Like Fig. 3, for mass distribution.
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0.001 0.010 0.100 1.000 10.000
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FIG. 5. Number concentration distribution as a function of diameter for different spectral resolutions usi
Long’s kernel, after 10 and 15 min of simulation. The average radius of the initial distribution wag.d8.4
(3 gkg?). The time step was 1 s.

the spectrum), the growth by collection often places the particles at the upper end of
bins and the approximation tends to decelerate the growth. At the same time one sees
the rate of convergence also depends on the initial distribution. It increases when the in
average radius increases.

The convergence of higher moments (eZj(t)) was also tested and found to be similar
to those obtained for the mass concentration.

In Fig. 7 the results obtained for different time steps are shown, in the case of Lon
kernel for 144 bins, with 1 gkgt at two times: 20 min and 40 min. For time steps as 1 an
2 s, the results are almost identical while fos and 10 s the accuracy is somewhat lower

-4 M | T T | T
10 T 44 bins
i » x 108 bins J
—o 72bins
~ 1060 -
£
£ I ]
£
S 408L .
5
(] L J
3
=
S 10710k .
1012 . , , , ! .
0.001 0.010 0.100 1.000 10.000

Diameter (mm)

FIG. 6. Like Fig. 5, for mass distribution.
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FIG. 7. Mass distribution as a function of diameter for Long’s kernel using different time steps. The num
of bins was 144 and the average radius of the initial distribution wag®131 gkg?).

One can, therefore, conclude that a time stéft 8 beutilized when using the 144-bin
algorithm as a reference for comparison with other numerical methods. As already poi
out, total mass is accurately conserved for all time steps.

Figure 8is similar to Fig. 6, except that here Hall's kernel was used. From this figure it
be seen that the results are very similar to those obtained using Long’s kernel. Only s
differences appear in the coagulation and convergence rates. In this case the coagL
rate is very slightly smaller than when Long’s kernel is used. Using Hall's kernel ratl
than Long’s kernel a little better convergence of the 108 bins to 144 bins is obtained.

-4 L} T 1 )
10 =—ag 144 bins
«x 108 bins i
—o 72bins
—~ 10'6_ 36 bins iy .
1S J
[S
S 4g8L i
2
Q i
38
=
S 10710} 4
w0 ..
0.001 0.010 0.100 1.000 10.000

Diameter (mm)

FIG. 8. Mass concentration distribution as a function of diameter for Hall's kernel using different spec
resolutions, after 10 and 15 min of simulation. The average radius of the initial distribution wast314gkg?).
The time stepwas 1 s.
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5. CONCLUSIONS

In this paper the solution of the kinetic collection equation was investigated using |
multi-moments method with 36, 72, 108, and 144 bins. The total mass was exactly conse
without dependence on the initial conditions, resolution, time step, or kernel. Three differ
kernels were used: Golovin's kernel, to which an analytical solution is available, and
real kernels of Long and Hall. It was shown that, as the number of bins increased, be
convergence to that of the 144 bins was obtained. The results from 108 bins were alr
identical to those obtained with 144 bins.

Based on these results it is inferred that the solution obtained for 144 bins approac
the exact solution of the KCE for any kernel of interaction and it could be utilized as
reference for evaluating the accuracy of other numerical methods used for computing
kinetic collection equation.

It is important to note that the same method of moments has been used to dev
numerical solutions for different kinetic transfer equations such as for the growth of clo
drops by vapor diffusion [27] for describing the changes in the raindrop size spectra du
collisional breakup [6] and for treating the interactions between drops and ice particles [
Furthermore, the method of moments can be used to solve a variety of physical proce
described by integro—differential equations.

The numerical calculations of the coagulation process using 144 biht atime step,
required about 300 s of CPU time on a SGI Challenge R10000 for simulating 1 h. Thereft
in simulations in which a detailed description of the coagulation process is required,
very high resolution grid can be implemented.

The computer codes that implement the algorithms presented in this article can be fr
obtained on the internet at http://www.tau.ac.il/geophysics/staff/tamirl/mom.html.

APPENDIX A

Using the KCE (1) and Eg. (2), one can obtain a system of equations with respect to
moments in each bik of the size distribution as

dMJ t Miy1 m/2
k()z/ dem/ f(m—x,t)f(m, x)o(m—x, x)dx

dt M m

I Xit1 M1
—Z/ fi (x,t)dx/ m’ f(m, t) dm, (A1)
i=1 VX

my

wherel is the total number of bins ami;, the smallest mass considered. The first dou
ble integral (gain integral) in Eq. (A1) is transformed by dividing the area of integratic
into separate subareas in whi¢hand f; represent the size distributions in bikandi,
respectively (for details see [2, 26]).

Using this approach a set of equations is obtained for the particular cases used in
paper. Equation (A5) is derived fqr> 2, Eq. (A6) is derived forp =22, Eq. (A7) is
derived forp = 2%/3, and Eq. (A8) is derived fop = 2%/4.

For the minimum and maximum values of the drop radii we chigse1.5625um and
rmax= 6.4 mm. Using different values gb, as above, within this size range the numbel
of bins, |, varies froml <36, | =72, | =108, andl =144, as represented by Eqgs. (A5),
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(AB), (A7), and (A8), respectively. The notation used is:

Flimx, 1) = m+x)? fi(m, 1) fi (X, oy (M, X) (A2)
Glim x, t) = [((M+x)7 —m’] fim, t) fi (X, o (M, X) (A3)
Hii(m, x, ) = m? fi(m, t) fi (X, Do k(x, m); (A4)
p=>2,
dM{(®
dt

k—2 Xit1 mg X me
= [ / / Fopimx, t)ydxdm+ 0.5/ / F e (m, x, t) dx dm]
=1 Xi mg—X Xk/2 mk/2
k

-1

Xit1 M1 Xic+1 Mic+1
— Z/ / Flim, x,tydxdm+ 0.5 / Flm, x, t)dx dm
Xi

i= Micp1 =X Xk41/2 J Micy1/2

Xit1 M1 Xit1 Mgt
/ / G (m, x, ) dx dm— Z/ Hlf,i(m,x,t)dxdm]
j=1 %
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{/ / T 1k-1(Mm x, t)ydxdm— / / ]—'lf,k(m,x,t)dxdrrﬂ
Xk—1 mg—X Myy1—X

+

+
Xi+1 Mk41
+0.5/ / Flm, x,t)dx dm (A5)
Xk my
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k—5 X1 my Xk —Xk—1 m
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—1 /% My+1—X Xk—3 Mi1—X
4

—+
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—+
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+
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Mic-1 X1 =Xk o/ Mi-1

Mi1—X Xk-3 Mi—1
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_|_
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Mk=X Xe—2 J Mgz

(A6)
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Xk —Xk—1 my

k-8 Xit+1 Mg
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Fiq7(m, x, t) dx dm]
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X
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Xi+1—Xk M1 Xk—10 M
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APPENDIX B: CONVERGENCE OF THE NUMERICAL SOLUTION
TO THE EXACT SOLUTION

There is no rigorous mathematical proof of the uniqueness of a numerical solution
general nonlinear integro—differential equation and of its convergence to the exact solu
In spite of that, it is shown, using mathematical logic, that in the present case the nume
solution converges to the exact solution when the spectral resolution is increased.

Melzac [16] proved that the KCE has a unique and exact solution when the initial dic
bution function is positive, continuous, bounded, and integrable and the kernel is symm
and bounded. All these conditions are fulfilled in the present case. In addition, Drake
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showed that all the moments of the distribution function can be found using Mellen’s tra
formation [25]. Once the moments are known, they can be used to calculate the ac
distribution function. The accuracy of the calculated distribution function depends on
number of moments used in the calculation.

The inequality (7) for the nondimensional paramétantroduced by Tzivioret al.[26]
is valid for all positive continuous functions and demonstrates that the range of value:
& depends only on the parameterTherefore, the accuracy of the approximation for higr
moments by (9) depends on the valuepadnly.

For example, wherp =2 the maximum error in the approximation of the second an
fifth moments by the first two moments using (8) and (9) is 6.25 and 83%, respective
For p= 24 the errors sharply decrease to 0.38 and 3.83%, respectively. Therefore,
required degree of accuracy can be achieved by decreasing the vadue of

This implies that if one obtains the first two spectral moments with high accuracy theni
possible to get any other higher moment with any required accuracy by using an approp
spectral resolution. In accordance with the work of Drake [3] which was discussed abc
the distribution function itself can be determined.

Using the multi-moments method, a set of equations with respect to spectral mome
of the distribution function is obtained from the original KCE without any mathemat
cal or physical assumptions. This is done foe 2, 212, 2%/3, and 2/4 (Egs. (A5)—(A8),
respectively).

In order to solve this set of equations one approximates the distribution function
each spectral bin using its two first moments. In the present scheme, a power polyno
approximation is used that accurately calculates the moments used for the approximatior
assures the positiveness of the distribution function. The order of the polynomial depend
the number of moments one wants to consider, the larger the number of moments, the hi
the order of the polynomial approximation. Inthe present case linear or cubic approximati
are used. Obviously, when one increases the spectral resolution, the approximation o
distribution function in the bin interval is closer to the actual distribution function. The
means that in order to obtain a better approximation of the distribution function one c
increase the spectral resolution or increase the order of the polynomial of the appr
mation.

As a result of the approximation, one obtains a set of equations in which the tin
dependent functions are out of the integrals. The expressions under the integrals a
the typem! x¥o (m, x), a known and time independent function, and can be calculated
advance up to machine precision accuracy.

Finally, a closed set of ordinary differential equations with respect to the first two spect
moments (Eqg. (12)) is obtained. The accuracy of the numerical solution of these equat
depends only on the spectral resolution and time step. For small time steps and high re:
tion the numerical solution approaches the exact solution [12, 14, 19]. While a signific:
difference is observed between the results for time steps of 10 s and 5 s, they are very sii
for 5 s and 2 s and thoserf@ s and 1 s are almost identical (Fig. 7).

When the spectral resolution is increased, the results gradually converge. Increa
the number of bins from 108 to 144 produces only a small difference in the results. T
convergence is obtained for any initial conditions and kernels. Therefore, for 144 bins :
time step of 1 s very accurate solutions for the first two spectral moments are obtained
one can proceed to find other higher moments with acceptable accuracy, using Eq. (9). (
these moments are known the distribution function itself can be constructed.
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